Friday, February 8, 2019

Persian Music Video - Googoosh - Man Amadeam گوگوش - من آمدم

Persian Music Video - Googoosh - Hamsedaye Khoobam گوگوش - همصدای خوبم

Music Video - Saqi | Ajmal Khattak | Sardar Ali Takkar | ساقي | اجمل خټک | سردارعلي ټکر

Music Video - LAILA KHAN BEQARAR YOUM JANANAA_ لیلا خان بی قراره یم جانه

Music Video - Pashto New Song 2019 - Zu Pa Da ...

Music Video - Noor Jahan - Jadon Holi Jai lenda mera naam

Music Video - sun wanjhli di mithri taan ve.. noor jahan..heer ranja

Music Video - Lokan do do yaar banaye afshan zebi

Music Video - Pyaar De | Sunny Leone & Rajniesh Duggall | Ankit Tiwari | Beiimaan Love

Music Video - PYAAR MANGA HAI - Zareen Khan,Ali Fazal

Don’t Trust the Taliban’s Promises



BY 

U.S. withdrawal from Afghanistan would leave a power vacuum filled by terrorists.

In his State of the Union address, President Donald Trump tied the withdrawal of U.S. troops to a peaceful settlement in Afghanistan. For a famously mercurial president, that may be no guarantee. But if the United States goes ahead with this course, negotiations should focus on fashioning a peace deal that can last instead of seeking a fig leaf to justify U.S. withdrawal.

At present, the framework agreement looks all too much like the negotiated exit of the Soviet Union three decades ago under the cover of the 1988 Geneva Accords. The Soviet withdrawal brought no peace or reconciliation to Afghanistan, and unless backed up with serious precautionary measures, neither will the U.S. exit.

The desire of Trump and his supporters to not act as “the world’s policeman” is understandable. But they fail to realize that the United States cannot be a global leader unless it has a global role—even if that is more as umpire than policeman. Trump’s trumpeted withdrawal from the Middle East and Afghanistan is not compatible with his talk of winning.

U.S. priorities in talks with the Afghan Taliban should be to seek a cease-fire, the release of Western hostages held by the Taliban, and an accommodation between the insurgents and the lawful Afghan government. Pakistani-created safe havens for the Afghan Taliban also need to be eliminated—a measure that can only be achieved through a hard conversation with Islamabad.

But the framework agreement announced by Trump’s special envoy for Afghan reconciliation, Zalmay Khalilzad, after initial talks with the Taliban reflected different priorities. It proposed the withdrawal of U.S. troops in return for a Taliban guarantee that Afghan territory would never be used by terrorists. But trusting the Taliban, at this point, would be sheer naiveté; the United States would be offering up an extraordinary concession—withdrawal—in return for a highly unreliable promise.

U.S. withdrawal without conditions being fulfilled would only signal America’s defeat and retreatJihadis across the world would celebrate such a deal as the vanquishing of a second global superpower at their hands.

In Afghanistan, the aftermath of a U.S. cut and run would probably be no different than the Soviet withdrawal in 1989. The people of Afghanistan will fight to forestall the return of the Taliban’s Islamic emirate. From their perspective, it might be better if the Americans withdraw without a deal that lets the Taliban into Kabul through the back door.

The framework agreement has already come under severe criticism. The veteran U.S. diplomat Ryan Crocker described it as tantamount to surrender. James Dobbins, who served as special representative for Afghanistan and Pakistan under President Barack Obama and was at one point responsible for negotiations with the Taliban, also warned against rushing into an Afghan deal.
Khalilzad dealt with the criticism by suggesting that there were elements of his talks with the Taliban that were just not known to the critics. “The path to peace doesn’t often run in a straight line,” he tweeted, adding that the situation in Afghanistan was complex and “like all sensitive talks, not everything is conducted in public.”

Khalilzad is an experienced and competent diplomat. But like all diplomats, he only executes policy, and the room for him to apply his experience is limited by the preferences of his boss.
The very fact that a U.S. presidential envoy has been negotiating with them has given the Taliban a degree of legitimacy. Accepting their assurance about not letting terrorists use Afghan soil implies that the terrorist acts perpetrated by the Taliban and their Haqqani network—including attacks on the U.S. Embassy in Kabul and American civilians—are now forgotten and forgiven.

A protest Pakistan wants to hide from the world

Why do some protests get reported in Pakistan and others not? M Ilyas Khan examines a story of human rights abuses the media is reluctant to cover and the authorities do not want to be told.
Pakistan's vibrant, at times almost cacophonic media, is struggling to report a fundamental contradiction in state policy.
This was at its most visible this week outside Islamabad's National Press Club.
An open ground outside the club premises - which some call Pakistan's Hyde Park because it is used for gatherings and protests - was occupied by a few hundred students from religious seminaries linked to a banned militant group.
They were holding an event to mark Kashmir Day, an official holiday in Pakistan which is observed to highlight human rights violations by Indian security forces in Indian-administered Kashmir.
But on the periphery of the Kashmir rally, police were busy spotting and arresting young men they suspected had come to attend another rally due to be held at the same venue.
Far from being militants, they were members or supporters of a rights movement that has been highlighting abuses by Pakistan's own military, in the ethnic Pashtun regions along the border with Afghanistan.
By the end of Tuesday, more than 30 activists of the Pashtun Tahaffuz (Protection) Movement, or PTM, had been rounded up, thrown in a police truck and taken to a police station.
The drama unfolded against the backdrop of speeches from the Kashmir rally in which speakers listed rights violations in Kashmir by the Indian army, and right in front of the eyes of the waiting media.
Dozens of television and newspaper photographers raced from one end to another trying to capture each arrest on camera.
But it was just their journalistic instincts kicking in - not a race to be first to actually cover the drama.
Because, while their TV channels thoroughly covered Kashmir Day events all over the country, including Islamabad, none of the videos of the arrests of the activists made it to the TV screens. Nor did they make headlines in the morning newspapers.
https://www.bbc.com/news/world-asia-47147409

Chairman PPP met with Pakistani Journalists

Chairman PPP met with Pakistani Journalists delegation comprising Asfar Imam, Anwar Iqbal, Wajid Ali Syed,
Jehanzaib Ali, Umer Farooq, Ali Imran and Khurram Shahzad.
Matters of bilateral ties, democracy and economic situation in Pakistan were discussed.
Chairman also appreciated the efforts and hard work of Pakistani journalists to present peaceful and tolerant image of Pakistan.
https://mediacellppp.wordpress.com/2019/02/09/chairman-ppp-met-with-pakistani-journalists/

A tribute to Dr Salam



By Miftah Ismail

Last week was the Pakistani Nobel Laureate Abdus Salam’s 93rd birth anniversary and since I was reading about his work I decided to write a column about science today.
Whenever Dr Salam’s name comes up in Pakistan, we discuss his religious beliefs but not his scientific contributions. The fact is that he was an outstanding scientist and has rightly earned respect in international academic circles for his seminal contribution to particle physics. His religious beliefs are irrelevant to his scientific achievements.
Now a little science to introduce you to a portion of Salam’s work: everything we interact with – from the air we breathe to the food we eat to the cement used in our homes – is made up of atoms, the smallest, indivisible part of matter. The iron grill in our home is made up of billions of iron atoms that make the element iron. The gold ring you’re wearing is made up of billions of gold atoms that make the element gold. However, the water we drink is a combination of two elements – oxygen and hydrogen – and is formed when two atoms of hydrogen combine with one atom of oxygen to form one molecule of water.
All atoms, whether those of iron or oxygen, are composed of a central nucleus (containing protons and neutrons) that is orbited by negatively-charged electrons. The electron orbit is so far away from the nucleus that an atom is mostly empty space. For example, if a nucleus were the size of a cricket ball the electron orbit would be 2.25 miles away.
The electron was first discovered in 1897 by the English scientist Joseph Thomson. Then in 1914, New Zealander Ernest Rutherford discovered the positively-charged proton. His student James Chadwick discovered the neutron in 1932.
An American physicist Murray Gell-Mann theorised that protons and neutrons are themselves made up of three quarks each. Hence, we can say that quarks along with electrons and similar particles are the basic building blocks of nature.
Nature has four fundamental forces: first, the strong nuclear force that keeps quarks confined within protons and neutrons and also binds protons and neutrons to form the atomic nucleus; second, the electromagnetic force that makes negatively-charged electrons orbit positively-charged nucleus; third, the weak nuclear force that causes radioactivity and converts neutrons to protons; and, fourth, gravity that makes matter attract each other and keeps large masses together.Physicist James Maxwell came up with the formulation for the electromagnetic force in 1873. The first successful theory of the strong nuclear force was put forth by the Japanese physicist Hideki Yukawa in 1935.
The third fundamental force, the weak nuclear force, was worked on by the distinguished Italian physicist Enrico Fermi and brilliant American physicists Richard Feynman and Maurice Gell-Mann. But it was our own Professor Abdus Salam who, along with Steven Weinberg working independently, correctly formulated and predicted that the weak force and the electromagnetic force were different manifestation of the same force at lower temperatures. And indeed it was experimentally confirmed some years later that, at high enough temperatures, these two forces are the same.
Gravity was first ‘discovered’ by the greatest scientist of all time, Sir Isaac Newton in 1760. (Newton also invented calculus. His German contemporary Gottfried Leibniz also independently invented calculus but Newton, not a particularly nice man, did all he could to deny Leibniz any credit for his invention. No controversy however exists regarding the father of algebra, Persian scholar Muhammad ibn Musa al-Khwarizmi – who in the ninth century wrote his book ‘Kitab al-mukhtasar fi hisab al-jabr wal-muqabala’ in Baghdad. The word algebra is derived from the word al-Jabr).
Newton’s theory of gravitation, while path-breaking, was not completely accurate and it was left to the great German-Swiss physicist, Albert Einstein, to give an accurate theory of gravity. Einstein’s theories of relativity were revolutionary and suggested that time and space (or one’s position in space) are both relative, that we live in a four-dimensional world with three spatial and one temporal dimensions, that the faster you move through space the slower you move through time, meaning that a person who travels close to the speed of light will age much more slowly than a person not moving as fast, and that gravity causes massive bodies to actually curve space. Einstein also discovered the universal speed limit, which is the speed of light, and gave us a formula that converts mass into energy.
Around the same time that Einstein was working on his theory of gravity, many European scientists including Max Planck, Werner Heisenberg, Wolfgang Pauli, Niels Bohr and Einstein himself were working on a new theory called the quantum theory or quantum physics. It says that particles such as electrons behave both like discrete particles as well as waves. These theories gave rise to some unintuitive results, such as the fact that when travelling from point A to B, an electron doesn’t just travel through the straight path but simultaneously travels on all possible paths. Or that if we know the exact speed of a particle we can’t know its location. Or that electrons orbiting a nucleus in an atom can’t just orbit anywhere but can only do so at discrete intervals.Einstein’s theory of gravity has been very successful in predicting the large-scale structure of the universe and numerous experiments have supported this theory. Equally successful has been the quantum theory predicting the behaviour of fundamental particles such has electrons etc. Countless experiments have supported the quantum theory.
The only trouble is that both these theories are incompatible at some level. Scientists are, therefore, busy finding a new theory that encapsulate both these theories but isn’t internally contradictory. One such candidate is string theory which posits all particles as tiny one-dimensional vibrating strings. String theory also hypothesises that the world we live in is made up of not three but ten or more dimensions. So far, string theory has not had any experimental success so it is not accepted as a valid explanation of physical phenomenon.
I wrote the names of scientists here purposely to give readers a flavour of the paucity of Muslim or Pakistani names among the discoverers of natural phenomena. And what’s worse is that even 71 years after Independence we are not on the right track yet.
While brilliant scientists around the world are studying how electrons can behave as both waves and particles, and how we can tell what distant stars are made of by studying the wavelength of light emanating from those stars, we have 3.5 million kids in madressahs to whom we teach no science. And we have millions more in fancy English-medium or government-run Urdu-medium schools where rote memorisation is the method of choice and where kids are mostly taught to remain incurious about the natural world around us.
Why is Pakistan poor? Why is our life expectancy up to 15 years less than Japan? Why do we have such high infant mortality? Because we don’t produce enough (or any) Newtons, Einsteins, Feynmans and Salams.

https://www.thenews.com.pk/print/428688-a-tribute-to-dr-salam

ڈاکٹر عبدالسلام کو خراجِ تحسین

گزشتہ ہفتے پاکستان کے نوبیل انعام یافتہ سائنسدان، ڈاکٹر عبدالسلام کی 93ویں سالگرہ تھی۔ حالیہ دنوں اُن کے کام کا مطالعہ کرتے ہوئے میں نے سائنس کے موضوع پر کالم لکھنے کا فیصلہ کیا ہے۔ جب بھی پاکستان میں ڈاکٹر صاحب کا نام لیا جاتا ہے تو ہم اُن کی سائنسی خدمات کی بجائے اُن کے مذہبی عقائد پر بحث شروع کردیتے ہیں۔ڈاکٹر سلام ایک ممتاز سائنسدان تھے۔ دانشور حلقے اُن کی فزکس پر کام، خاص طور پر اس کے بنیادی ذرات کی دریافت، کے معترف ہیں۔ یہاں میں قارئین کے ساتھ ڈاکٹر سلام کے کام کا کچھ ذکر کرنا چاہوں گا۔ آپ کا دنیا کی جس چیز سے بھی واسطہ پڑتا ہے۔ ہر چیز مادے کے چھوٹے چھوٹے ذرات، ایٹموں سے بنی ہے۔ تاہم پانی جو ہم پیتے ہیں، اُس میں دوعناصر ہیں۔ آکسیجن اور ہائیڈروجن۔ پانی کا ایک مالیکیول ہائیڈروجن کے دو اور آکسیجن کے ایک ایٹم پر مشتمل ہوتا ہے۔
تمام ایٹم، چاہے وہ لوہے کے ہوں یا آکسیجن کے، میں ایک مرکزہ(نیوکلیس )ہوتا ہے، جو پروٹانز اور نیوٹرانز پر مشتمل ہوتا ہے۔ اس کے گرد منفی چارج والے ذرات گردش کرتے ہیں۔ یہ ذرات الیکٹران کہلاتے ہیں۔ الیکٹرانز کا مدار نیوکلیس سے کافی دور ہوتا ہے۔ اس لیے ایٹم کا زیادہ ترحصہ خالی ہوتا ہے۔ مثال کے طور پر اگر نیوکلیس کا حجم ایک کرکٹ بال جتنا ہو تو الیکٹرانز کا مدار اس سے 2.25 میل دورہوگا۔
الیکٹرانز کو سب سے پہلے ایک انگریز سائنسدان، جوزف تھامسن نے 1897ء میں دریافت کیا تھا۔ 1914ء میں نیوزی لینڈ کے ایک سائنسدان، ردرفورڈ نے مثبت چارج رکھنے والا ذرہ پروٹان، اور اُن کے شاگرد، جیمز چاڈوک نے 1932ء میں نیوٹران دریافت کیا۔ ایک امریکی سائنسدان، مرے گلیمن نے تھیوری پیش کی کہ پروٹانز اور نیوٹرانز بذاتِ خود تین بنیادی ذرات سے مل کر بنے ہیں۔ چنانچہ ہم کہہ سکتے ہیں یہ ذرات اور الیکٹرانز فطرت کے ساختی اجزا ہیں۔
فطرت میں چار بنیادی قوتیں کارفرما ہیں۔ پہلی طاقتور نیوکلیئر طاقت ہے جو بنیادی ذرات کو نیوٹرانز اور پروٹانز کے اندر جوڑے رکھتی ہے۔ یہی طاقت نیوٹرانز اور پروٹانز کو باہم جوڑ کر نیوکلیس بناتی ہے۔ دوسری طاقت الیکٹرومیگنیٹک ہے، جو منفی چارج رکھنے والے الیکٹرانز کو مثبت چارج رکھنے والے پروٹانز کے گرد مدار میں گردش کرنے پر مجبور کرتی ہے۔ تیسری ایک کمزور ایٹمی طاقت ہے جو نیوٹرانز کو پروٹانز میں تبدیل کرتی ہے۔ چوتھی طاقت کششِ ثقل ہے جو تمام مادے اور مادی اجسام کو باہم مربوط رکھتی ہے۔
ماہرِ طبیعات جیمز میکسویل نے 1873ء میں الیکٹرومیگنیٹک طاقت کا فارمولہ وضع کیا۔ طاقتور ایٹمی طاقت کی پہلی کامیاب تھیوری ایک جاپانی سائنسدان، ہدیکی یکوانے 1935ء میں پیش کی۔ تیسری بنیادی طاقت، جو کمزور ایٹمی طاقت ہے، پر اطالوی سائنسدان انریکو فرمی اور ممتاز امریکی سائنسدانوں، رچرڈ فینمین اور میرس گلمین نے کام کیا۔ لیکن یہ ہمارے پروفیسر عبدالسلام تھے جنہوں نے سٹیون ونبرگ کے ساتھ مل کر آزادنہ طور پر کام کرتے ہوئے درست فارمولہ وضع کیا، اور پیش گوئی کی کہ کمزور ایٹمی طاقت اور الیکٹرومیگنیٹک طاقت دراصل ایک ہی طاقت کے کم درجہ حرارت پر مختلف مظاہر ہیں۔ کچھ سال بعد تجربات نے اس بات کی تصدیق کردی کہ بہت بلند درجہ حرارت پر یہ دونوں طاقتیں یکساں ہوجاتی ہیں۔
کشش ِثقل کو سب سے پہلے دنیا کے عظیم ترین سائنسدانوں میں ایک، سرآئزک نیوٹن نے 1760 ء میں دریافت کیا۔ نیوٹن نے ریاضیاتی تجزیہ بھی وضع کیا۔ اُن کے جرمن ہم عصر، گوٹفریڈلبنز نے اپنے طور پر کام کرتے ہوئے اس پیش رفت میں اپنا کردار ادا کیا، لیکن نیوٹن جو بطور انسان بہت وضع دار نہیں تھے، لیبنز کو اس کا کریڈٹ دینے کی بجائے اس کا سہرا اپنے سر سجالیا۔ تاہم الجبرے کی اختراع کے حوالے سے ایسا کوئی تنازع نہیں ہے۔ایرانی اسکالر، محمد ابن موسیٰ الخوارزمی نے بغداد میں نویں صدی میں ’’کتاب المختصر فی حساب الجبروالمقابلہ‘‘ تصنیف کی تھی۔ الجبرا اسی لفظ، ’’الجبر‘‘ سے مشتق ہے۔
نیوٹن کی کششِ ثقل کی تھیوری اگرچہ ایک بہت بڑی پیش رفت تھی، لیکن مکمل طور پر درست نہ تھی۔ اسے درست کیا عظیم جرمن سائنسدان، البرٹ آئن اسٹائن نے۔ آئن اسٹائن کی ریلٹیویٹی کی تھیوریوں نے سائنسی تصورات میں انقلاب برپا کردیا۔ ان کے مطابق وقت اور خلا (یا کسی کی خلامیں پوزیشن ) دونوں باہم مربوط ہیں۔ ہم ایک چہار جہتی دنیا میں رہتے ہیں جس میں تین مکانیت سے تعلق رکھتی ہیں جبکہ چوتھی متغیر جہت ہے۔ ہم جتنی تیز رفتاری سے خلا میں حرکت کریں، وقت کی رفتار اتنی ہی سست ہوجائے گی۔ اس کا مطلب ہے کہ ایک شخص، جو روشنی کی رفتار سے سفر کرتا ہے، اس کی عمر کا وقت اُس شخص کی نسبت سست رفتاری سے گزرے گا جو روشنی کی رفتار سے سفر نہیں کررہا ہوگا۔ نیز کششِ ثقل اجسام کو خلا میں منحنی راستے پر حرکت کرنے پر مجبور کرتی ہے۔ آئن اسٹائن نے کائنات کی رفتار کی حد بھی دریافت کی۔ یہ روشنی کی رفتار ہے۔ اُنھوں نے دنیا کو وہ شہرہ آفاق فارمولہ دیا جو مادے کو توانائی میں تبدیل کرتا ہے۔
آئن اسٹائن کششِ ثقل کی تھیوری کامیابی سے کائنات کے وسیع نظام کی پیش گوئی کرتی ہے اور لاتعداد تجربات اس کی سچائی کی تصدیق کرچکے ہیں۔ اسی طرح کوانٹم تھیوری بھی بنیادی ذرات کی حرکیات کو کامیابی سے بیان کرتی ہے۔ اس کی تصدیق بھی لاتعدا د تجربات سے ہوچکی ہے۔ واحد مشکل یہ تھی کہ یہ تھیوریز کسی نہ کسی درجے پر ناموافق ہوجاتی ہیں۔ چنانچہ سائنسدان کسی نئی تھیوری کی تلاش میں ہیں جو ان تھیوریز کی وضاحت کردے، لیکن بنیادی طور پر ان کی مخالفت نہ کرے۔ ایسی تھیوریز میں سے ایک اسٹرنگ تھیوری ہے۔ یہ تھیوری فرض کرتی ہے کہ تمام ذرات یک جہتی تھرتھرانے والی اسٹرنگ تشکیل دیتے ہیں۔ اس کے مطابق دنیا، جس میں ہم رہتے ہیں، تین نہیں بلکہ دس یا اس سے بھی زیادہ جہتیں رکھتی ہے۔ فی الحال اسٹرنگ تھیوری کی کسی تجربے سے تصدیق نہیں ہوسکی ہے۔ چنانچہ یہ ابھی فزکس کی شرح میں سند نہیں رکھتی ہے۔ سائنسی تحقیق کا سفر جاری ہے۔
https://jang.com.pk/news/606692-dr-miftah-ismail-column-8-2-2019